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AN APPROACH TO SOLVING THREE-DIMENSIONAL DYNAMIC PROBLEMS OF THE THEORY OF 
ELASTICITY AND VISCO-ELASTICITY FOR BODIES OF COMPLEX SHAPE * 

K.S. PUSTOVOIT, I.E. TROYANOVSKII and I.N. SHARDAKOV 

An approach is proposed for finding the natural frequencies and natural 
spatial shapes of the oscillations of an elastic body, which is suitable 
for bodies of a complex geometrical shape. The approach is based on the 
method of backward iterations /i/, using the method of geometric 
imbedding at each iteration**, (**See I.N. Shardakov, I.E. Tryanovskii, 
and I.N. Trufanov, The method of geometric imbedding for solving 
boundary value problems of the theory of elasticity, Preprint, In-t 
Mekhaniki Sploshnykh Sred, Sverdlovsk, 1984.).Examples are given of the 
numerical realization of the iterative algorithm, and the natural 
frequencies and shapes are found for some bodies of complex geometrical 
shape. These natural shapes are used as basis functions for studying 
the forced steady-state oscillations of visco-elastic bodies of complex 
shape. 

i. The determination of the natural shapes and frequencies of the oscillations of a 
linear elastic body occupying a domain Q in three-dimensional Euclidean space with boundary 
F, under homogeneous boundary conditions in the displacements on the part Fu of the boundary 
and in the stresses on the remainder F o of the boundary, reduces to finding the non-trivial 
solutions of the variational equation 

V v ~ V ,  <u, v~ = ~(u, v) (1.1) 
/ = { v ~ ( H ' ( Q ) ) " ;  v = O , x ~ r } ,  ,=3 

<U,V> = ~ o ( u ) . . e ( v ) d Q ,  (u,v) =~ puv 
I 

d~ 

ffu~= <u, u / / ' ,  l u l = ( u , u )  ' / '  

Here, V is the Hilbert space of vector functions, while the last equations define the 
scalar products and the norms generated by them; a.e are the stress and deformation tensors, 
p is the material density, ~ is the wanted eigenvalue, and ".." denotes the double scalar 
product. 

To find the lowest simple eigenvalue k~ and the corresponding eigenelement u~, we will 
use the iterative algorithm whose convergence is proved by the following theorem. 

Theorem 1. If the sequence of iterations {z (~)} is realized in such a way that 

Vv ~ F,<w(~),v> =(z(k-1),v) (1.2) 
z (~) = w(k)/[w(~)[, k = i, 2 . . . .  (1.3) 

and (z (°),u,)~0, then 

nz C~)- u, lk.® --0 (1.4) 

PrOOf. Since the orthonormalized system of eigenvectors {u,} is complete /2/, we have 

t=l ~=I 

where a~ ~) and b~ ) are Fourier coefficients, and the closure equations hold. Noting the 
orthogonality relations 

<uk, u p = ~ 6 k l ,  (Uk, Ul)=6~Z; k , ~ = t , 2  . . . .  

we see by substituting (1.5) into (1.2) that a!k)l i= b~-1), ~= 1.2,.... On the other hand, from 
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(1.3) we have 

b~l~) : a~ t0 [~, (a~t'))i] - 'A 

Then, 

oo 

"<, < s y r ;  '(>')=:'<,= {-~7-, ) <4°% '~=t,~Lt-~ ) 

Further, for the norm of the difference we have 

,, .< '>-. .  ,, = [  <,.or ')' + ,: #] ( I"< l-" 

and noting that & [~ ~ i/a~ ), we finally obtain (1.4) . Note that I w(~)[~ -- Z,. 

To find the subsequent (in magnitude) eigenvalues and the corresponding eigenvectors, we 
iterate the vector z (°), belonging to the orthogonal complement of the linear envelope of the 
eigenvectors obtained. Note that, if the spectrum includes multiple eigenvalues, the algorithm 
remains unchanged, so that it can be used without preliminary information about multiplicity. 

2. To find the solution u ° of the variational equation 

V~ ~ V, <u,v> : ( f ,v )  (21)  

which appears in the statement of the algorithm, we use the method of geometric imbedding. 
We define an open bounded set ~ with boundary ~, such that ~c n0, Fu C ~ and there 

exists on ~A = ~0\ n a solution v°(w) of the boundary-value problem of the theory of 
elasticity with boundary conditions in the displacements on the part of the boundary coincid- 
ing with F, and homogeneous conditions in the stresses on the remainder of the boundary 

d ~ v ~ ( u ) =  O, u =  w, x ~ F  

We define the Hilbert space 

~% = {V ~ ( H I ( Q o ) )  n, v = 0, x ~ Fi,} 

and introduce the notation 

c P <u, v>0 = ~ ~ (.). ~ (v) dao, <u, v> A = ~ a (u). ~ (~) d~ A 

We consider the boundary-value problem of the theory of elasticity for an inhomogeneous 
body which occupies the domain ~ and has in Q the Young's modulus E, and in the domain 
~a the modulus E,= eE, 0<~<1, and the constant Poisson's ratio ~ in the whole of Q0. 
There exists in space I% a unique element w ° ~ }% which is the solution of the variational 
equation 

V v ~ V  o, < w , v ~ + ~ < w , v > ~ = ( f , v )  (2.2) 

We define the one-to-one mappings 

g V o ~ V ,  V u ~ V  o , ~ v ~ V ;  v = g ( u ) < ~ V x ~ Q ,  v ( x ) = u ( x )  

h : t  ~I . 'o ;  V u ~ V ,  S J v ~ V o ;  v = h ( u ~ Y x ~ f 2 v ( z ) = u ( x ) ,  V x ~ . Q ~ . v = v O ( u )  

(2.3) 

(2.4) 

Note that Vu ~ v, v~ $%, ~h (u),v> = <u. g(v)> 
The fact that the solutions u ° and w ° of Eqs. (2.1) and (2.2) are close is proved by the 

following theorem. 

TheoPem 2. By taking a sufficiently small parameter e, the solutions of Eqs. (2.1) and 
(2.2) can be made as close as desired, in the region ~, so that 

V 6 > O ,  ~ e > O ,  [ J u ° - - g ( w ° ) [ l < 8  (2.5) 

Proof. We put c= <h°,h°>. where h°=h(u°). Subtracting (2.2) from (2.1) and putting 
v=h °-w °, we obtain 

<h c - -  w °, h ° - -  w°> = ~ (w °, h~> --  8 <W °, W°>A 

whence <w°,h°>a>/0 On the other hand, 

< h° - -  W¢, hd - -  W°> = --~ <h° - -  w°, h° - -  W°>A -~- ~ <h°, h°>A --  ~: < h°, W°>a ~ 8c 

and with ~ = 621(2c) we obtain (2.5) . 
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We can use the theorem to find the solution of Eq.(2.2) instead of the solution of (2.1); 
they are close when ~ is sufficiently small. 

Noting that 
Vu, v ~  Vo, <u,v>e = <u,v> ~ <u,v>a 

we can seek the solution of (2.2) as the expansion 

w ° ~  ~ ~nw(n~, x = i - - a  (2.6~ 
n ~ o  

Vv~Vo,<Wt°),V>o=(f,v), <wtn),v>o~<w(n-1),v>a 

We have 

<w (n), w(n)>0 .- <w(n-l). w(n-1)>0 = -- <w(n), w(n)> __ <w(n-£) w(n-1)> __ 
<w (") -- w (~-x), w (n) -- win-1)> a ~< 0 

i.e., [Jw(~)]~ < ~w("-*)~, and series (2.6) is convergent in the norm [[ul~ = <u,u >0V'np~IxKt~ 

To sum up, our approach reduces the problem of finding the natural frequencies and shapes 
of the oscillations of a body of complex geometrical shape to an iterative sequence of static 
problems for a body of simpler shape in which the original body is embedded. Here, we took 
as the homogeneous elastic canonical domains solids of revolution, and the solutions in the 
canonical domains were obtained semi-analytically by the finite-element method /3/. 

/ 
/ 
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Fig. 1 Fig. 2 

3. The numerical computations were made for a body in the form of a disc of variable 
thickness with blades mounted along its periphery. The 12 lowest natural frequencies and the 
corresponding spatial shapes of the oscillations were found. The disc geometry and the shape 
of the oscillations corresponding to the lowest natural frequency are shown in Fig.1 (for 
clarity, we show 1 of the 23 blades). 

The natural shapes of the oscillations of an elastic body were used as basis functions 
for studying the forced steady-state oscillations of a visco-elastic body of complex geometry. 
The study was made in the context of linear Boltzmann-Volterra hereditary theory. The 
relaxation kernel was the Rzhanitsyn three-parameter kernel /4/. 

The broken curves of Fig.2 are the amplitude-frequency responses (AFR) of the r-.z- and 
~-components of the displacements of point A of the body, see Fig.1. Curves I-3 refer to the 
values ur x103, uz xl0a, u_ xl0 ~ . The continuous curves are the A~'s of the same point A when 

• o~ . 
one adjacent blade is mlsslng. The blade mass is 0.91% of the total disc mass. It can be 
seen that it takes only a slight change in the construction to radically change the AFR shape. 
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